2 0
زمان مطالعه: 3 دقیقه
Read Time:5 Minute, 2 Second

کلان داده

کلان داده‌ها، مه داده‌ها یا بزرگ داده‌ها (به انگلیسی: big data) دارایی‌های داده‌ای اند بسیار انبوه، پرشتاب و/یا گوناگون که نیاز به روش‌های پردازشی تازه‌ای دارند تا تصمیم‌گیری، بینش تازه و بهینگی پردازش پیشرفته را فراهم آورند». کلان داده یا بزرگ داده‌ها مسیر حرکت کسب و کار و فرایند چرخش کار در سازمان‌ها را مشخص می‌کنند. در بزرگ‌داده با داده‌های متمایز و بزرگ که دائماً از لحاظ حجم، نرخ تولید داده و تنوع در حال تغییر هستند سروکار داریم. در اینجا، داده‌های پرشتاب داده‌هایی‌اند که با شتاب بالایی تولید می‌شوند. کلان‌داده از چند ۱۰ ترابایت به چندین پتابایت در یک مجموعهٔ داده دارد می‌گسترد. نمونه‌هایی از کلان‌داده چنین‌اند: گزارش‌های وبی، سامانه‌های بازشناسی با موج‌های رادیویی، شبکه‌های حسگر، شبکه‌های اجتماعی، متن‌ها و سندهای اینترنتی، نمایه‌های جستجوهای اینترنتی، اخترشناسی، مدرک‌های پزشکی، بایگانی عکس، بایگانی ویدئو، پژوهش‌های زمین‌شناسی و بازرگانی در اندازه‌های بزرگ.

کاربردهای کلان داده چیست؟ وقتی از بیگ دیتا صحبت می‌کنیم، بیشتر از یک وضعیت حرف می‌زنیم؛ وضعیتی که در آن حجم زیادی از داده‌ها، با سرعت زیاد و تنوع گسترده تولید می‌شوند. اما این‌که از چنین وضعیتی چگونه می‌توان استفاده کرد، نیازمند دانش‌های دیگری است. دانشمندان علوم داده‌ها (Data Scientists)، متخصصان هوش مصنوعی (Artificial Intelligence) و فعالان داده کاوی (Data-mining) از جمله کسانی هستند که می‌توانند کاربردهای Big Data را در حوزه‌های مختلف بیابند و توسعه دهند. بنابراین با وجودی که اصطلاح کاربردهای کلان داده (‌Big Data Applications) در فارسی و انگلیسی رایج است و ما هم آن را به‌کار می‌بریم، همواره به‌خاطر داشته باشید که منظور، کاربردهای تحلیل کلان داده‌هاست؛ وگرنه حجم و تنوع داده‌ها، به خودی خود کاربردی ندارد و اگر تحلیل و پردازش مناسب روی‌ داده های حجیم انجام نشود، این داده‌ها از منظر مدیریت منابع، با سایر منابع هرز سازمانی تفاوتی نخواهند داشت.

کاربرد Big Data چیست؟ بررسی چند نمونه ساده از جمله کاربردهای بیگ دیتا در زندگی روزمره می‌توان به سرویس های مسیریابی مانند Waze و بخش Navigation در Google Maps اشاره کرد. حجم قابل توجهی از داده‌های مربوط به وسایل نقلیه‌ی در حال حرکت (در واقع: موبایل‌های در حال حرکت) به صورت پیوسته و در لحظه، پردازش می‌شوند و مسیرهای مناسب بر اساس مقصد تعیین شده و ترجیحات کاربران به آن‌ها پیشنهاد می‌شود. در بحث مدیریت ارتباط با مشتری هم، CRM تحلیلی یکی از حوزه‌هایی است که کاربرد کلان داده در آن کاملاً مشخص است و مرور درس CRM تحلیلی می‌تواند در این زمینه کمی به شما دید بدهد. اگر با بخش بندی بازار و بررسی رفتار مشتریان هم آشنا باشید، بی‌تردید می‌توانید تصور کنید که تحلیل بیگ دیتا چقدر می‌تواند مفید باشد و در این زمینه به کمک تصمیم‌گیران بیاید. اگر با بحث شخصی سازی (Personalization) هم آشنا باشید، می‌توانید حدس بزنید که تحلیل داده‌ها در حجم بالا، چگونه می‌تواند به برنامه ریزی برای شخصی سازی خدمات کمک کند. البته شخصی سازی خدمات، حتی بدون تحلیل کلان داده هم امکان‌پذیر است. اما وقتی گزینه‌های پیش روی شما زیاد و منابع‌تان محدود باشد، طبیعی است که شخصی سازی بر اساس تحلیل بیگ دیتا می‌تواند اثربخش‌ترین گزینه‌ها را (در مقایسه با هزینه‌ی هر گزینه) برای شما تخمین زده و برآورد کند. سیستم های توصیه گر (Recommendation Engines) هم از جمله کاربردهای کلان داده ها در کسب و کارهای دیجیتال هستند و استفاده از Big Data در این زمینه، نتایج محسوس و ملموسی به همراه داشته است. یکی از حوزه‌هایی که همواره در بحث بیگ دیتا مورد توجه بوده، حوزه پزشکی است. علل مختلفی را برای این مسئله می‌توان ذکر کرد: اطلاعات عددی گسترده و متنوعی که می‌توان از بیماران به دست آورد (در مقایسه با حوزه‌‌های کیفی) میل انسان‌ها به همکاری در حوزه‌ی سلامت (با این فرض که می‌تواند برایشان دستاوردهای مفید داشته باشد) اپلیکیشن‌ها و ابزارهای متعددی که امروزه در حوزه‌ی سلامت استفاده می‌شوند و داده‌های فراوانی که تولید می‌کنند (فقط کافی است به سنسور شتاب‌سنج موبایل خود فکر کنید که در بخش زیادی از روز، حرکت‌های شما را ثبت می‌کند) اما در بررسی کاربرد بیگ دیتا در پزشکی، مهم است که حوزه‌های مختلف را از یکدیگر تفکیک کنیم. مثلاً شاخه‌ی پیش بینی از جمله حوزه‌هایی است که امید نسبتاً بیشتری به‌ آن وجود دارد و پیشرفت‌های جالب‌توجهی هم داشته است (شاید پروژه‌ی Google Flu را بشناسید که هدف آن، پیش‌بینی آمار و روند شیوع آنفولانزا در نقاط مختلف، بر اساس میزان جستجوی کاربران بود). شاخه‌ی عارضه‌یابی و Diagnose، دومین حوزه‌ای است که رشد محسوسی داشته است و امکان پردازش حجم زیاد تصاویری که از بیماران ثبت می‌شود، این امید را ایجاد کرده که بتوان در آینده فرصت‌های ارزشمندی برای عارضه‌یابی خلق کرد. حوزه‌ی درمان و تصمیم گیری‌های مربوط به آن، دشوارترین شاخه است و هنوز، باید زمان زیادی منتظر بمانیم تا دستاوردهای محسوس آن را مشاهده و تجربه کنیم.

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %